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What would happen if well-qualified, 
open-minded, academic scientists were given 

the opportunity to investigate cold fusion?
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Project Charleston
A sponsored research program to reevaluate cold fusion



“Incremental improvements to existing technologies aren’t enough;
we need something truly disruptive to reverse climate change.”
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Ross, Dave, and I joined forces in 2015 at Google

Motivation
The unsettled status of “cold fusion” is unconscionable.
Credible, current research would help inform this debate.

Goal
Find a reference experiment that can be studied, understood,
and improved upon.

Recruit new
scientists 
with...

● Expertise in disciplines relevant to cold fusion
● No prior position on cold fusion (for or against)
● Willingness to collaborate as a “Peer Group” and with Google
● Commitment to publish what is learned



Some statistics about our program

*   To ensure the privacy of all participants, our collaborations were under NDA. Full details can not be disclosed.

16 collaborations*
● 8 new academic groups
● 8 experienced LENR researchers/groups
● 6 more collaboration attempts were unsuccessful
● 12 calorimeter designs were qualified
● No lab work was conducted at Google

$10 million invested in external sponsored research
● Collaborations varied in duration and funding amount

27 peer-reviewed articles published to date
● Including 6 Nature-family papers and 2 granted US patents
● Complete list here: https://groups.chem.ubc.ca/cberling/charleston/

https://groups.chem.ubc.ca/cberling/charleston/


Funding (input) and publications (output) over time



Nature Perspective
Revisiting the cold case of cold fusion (May 2019)
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1. Highly hydrided metals
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In situ X-Ray diffractionSource: Nature Perspective

Claim: Cathode loading of PdHx where x ≥ 0.875 
is required to produce excess heat.

Our experience: Highly hydrided materials are 
difficult to produce. The dynamic equilibrium
of hydrogen ingress and egress produces 
loadings far short of the thermodynamic limit.
We achieved x = 0.96 ± 0.02 once.

Hydrogen loading is difficult to measure.
We found in situ XRD and stripping coulometry
to be the most accurate methods.

Conclusion: “...more work is required to
produce stable samples of PdHx where x ≥ 0.875 
to comprehensively evaluate these claims.”

We have a
leaky bucket



2. Calorimetry under extreme conditions
Claim: Certain metallic powders, such as 
nickel and lithium aluminium hydride, produce 
excess heat when heated in hydrogen gas.

Our experience: We designed a calorimeter 
capable of operating at 1,200 °C and 33 atm 
with less than 2% measurement uncertainty.

To detect ≥ 10% excess heat events with 98% 
confidence, each experiment was run 4 times 
in parallel in identical calorimeters.

For 16 months, we evaluated the effects of 
temperature, pressure, sample composition, 
particle size, and surface treatment.

Conclusion: “...none of the 420 samples we 
evaluated provided evidence of excess heat.”

Source: Nature Perspective



3. Low-energy nuclear reactions
Claim: Nuclear by-products, such as tritium, can be 
generated in low energy pulsed plasma experiments.

Our experience: We used pulsed plasmas (20 µs, 50 Hz,
1-5 keV, 1 A peak) in deuterium gas environments to drive 
deuterions into palladium wire targets. After prolonged 
irradiation (hours to weeks), ex situ measurements of the 
targets indicated no enhanced tritium production.

More work is required to rigorously evaluate mechanisms to 
enhance fusion rates < 2 keV, such as electronic screening.

Conclusion: “We are enthused by the possibility of 
obtaining reaction cross-section and S-factor data in
the grey shaded region [of the figure on the right]...”

Source: Nature Perspective



Key takeaways

Did we find a reference experiment?  No.

“So far, we have found no evidence of anomalous effects claimed by proponents of cold 
fusion that cannot otherwise be explained prosaically”, but “the search for a reference 
experiment for cold fusion remains a worthy pursuit”.*

Is cold fusion research compatible with mainstream academic practice?  Yes.

Incentives and interests of researchers and sponsors can (and must) be aligned.
Committing to publish in high impact, peer reviewed journals helps achieve that.

* Quotations from our Nature Perspective.



What has happened since May 2019?



We were hit with a global pandemic



Clean energy investment worldwide must increase to
$4 trillion annually to reach net-zero emissions by 
2050 and limit temperature rise to 1.5°C by 2100.

Faced with the prospect of having to invest
$100 trillion by 2050 to transform the global energy 
system, influential people are interested to learn about 
all available options.

Interest in fusion energy has increased notably 
since December 2020.

The cost of transitioning to a low carbon economy is sinking in

www.iea.org/reports/net-zero-by-2050



Our Nature Perspective is having its intended impact

* https://www.nature.com/articles/s41586-019-1256-6/metrics

20k article accesses

This article is in the 99th percentile (ranked 1,186th) of the 275,787 tracked articles of a similar age in
all journals and the 84th percentile (ranked 145th) of the 944 tracked articles of a similar age in Nature*

“We got our impetus from the Google paper appearing in Nature,”
says Carl Gotzmer, Indian Head’s Chief Scientist.

- IEEE Spectrum, Whether Cold Fusion or Low-Energy Nuclear Reactions,
U.S. Navy Researchers Reopen Case (March 2021)

... the main motivation for this work is based on the recent Nature 
perspective “Revisiting the cold case of cold fusion”.

- EU Horizon 2020 HERMES project description, Breakthrough zero-emissions 
heat generation with hydrogen-metal systems (November 2020)

https://spectrum.ieee.org/tech-talk/energy/nuclear/cold-fusion-or-low-energy-nuclear-reactions-us-navy-researchers-reopen-case
https://spectrum.ieee.org/tech-talk/energy/nuclear/cold-fusion-or-low-energy-nuclear-reactions-us-navy-researchers-reopen-case
https://cordis.europa.eu/project/id/952184
https://cordis.europa.eu/project/id/952184


“Quantum 2.0 refers to the development and use of many-body quantum super-
position, entanglement, and measurement to advance science and technology.”*

Examples include:

● Quantum computing
● Quantum communications
● Quantum sensing
● Quantum energetics

LENR research might get a boost from these emerging capabilities.

Collective quantum effects are enabling new technologies

* OSA Quantum 2.0 Conference website 

https://www.osa.org/en-us/meetings/topical_meetings/quantum/program/#:~:text=Quantum%202.0%20refers%20to%20the,quantum%20communications%2C%20and%20quantum%20sensing.


Given what we now know (collectively),
what should we do next?

These forward looking statements are the personal opinions of the speaker.
They are not to be construed as the official position of Google. 



There were reasons to be optimistic in 2015 

Andrea Rossi (E-cat) Tom Darden (Industrial Heat) Bill Gates (Texas Tech University)

● NEDO nano-metal hydrogen energy (MHE) project (Japan)
● Sidney Kimmel Institute for Nuclear Renaissance (USA)
● Current Science: Special Section: Low Energy Nuclear Reactions (India)

Image/photo credits: Amazon.com, Cold Fusion News, New Energy Times

https://www.researchgate.net/project/Leading-the-Japanese-Gvt-NEDO-project-on-anomalous-heat-effect-of-nano-metal-and-hydrogen-gas-interaction
https://web.archive.org/web/20170805185756/http://www.currentscience.ac.in/php/feat.php?feature=Special+Section:+Low+Energy+Nuclear+Reactions&featid=10094


So what happened?

There is a heated debate in the LENR community about the degree to which
anomalous effects are already “proven”.

However, truly independent replications are lacking.

Our experience is that the LENR community either can not teach or will not teach.

Failure to share the best of what is known has impeded scientific progress.

“Collectively we have the answer, individually none of us does!”
- Michael McKubre, ICCF-20, Sendai, Japan (2017)



Two constituencies. Two messages.

There is a place in history for the person or group who successfully enables
truly independent replication of their claimed anomalous effect.

     For the good of the planet and the health of this field, let’s aspire to have one set of claims
     independently verified and published in a peer reviewed journal by ICCF-24.

Let’s recruit 100 new scientists to this field. We will learn from them.

     As the abstract of our Nature Perspective concludes, “...we contend that there remains
     much interesting science to be done in this underexplored parameter space.”

Let’s go exploring!
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