Artificial radioactivity in the nonequlibrium plasma of the glow discharge in Pd-D and Ni-H from the point of view of nuclear-chemical reactions It is shown that artificial radioactivity can be initiated in conditions of nonequlibrium plasma glow discharge. The analysis of the isotope and elemental composition in the near-surface layers of Pd and Ni, the original and after 40-hour exposure in deuterium- or protium-containing plasma by the ICP mass spectrometry (ICP-MS) has revealed significant changes in isotope composition of impurity elements. The significant reduction in Pt and Pb impurities in Pd-D systems in times have found. In addition, an increase in the content of W isotopes was found in the Pd-D system, which correlated with a decrease in the content of Pt isotopes. In the **Pd-D** experiment the content of **Pb** isotopes (masses 206, 207, 208) decreased by \sim 200 times and **Pt** isotopes by \sim three times, and in the **Ni-H** experiment, **Fe** (by \sim 3-10 times) and **Zn** (from 20 to 1000 times). Table 1 Reducing the content of Pb and Pt isotopes in Pd after exposure in D plasma (ICP)* | Pb in Pd | 204 | 206 | 207 | | 208 | |--------------------------|--------|--------|--------|--------|--------| | Before exposure, % | 1.51 | 24.64 | 19.67 | | 54.18 | | After exposure, % | 6.29 | 23.67 | 19.98 | | 50.06 | | The remaining isotope, % | < 0.1 | < 0.57 | < 0.61 | | < 0.55 | | Pt in Pd | 192 | 194 | 195 | 196* | 198* | | Before exposure, % | 0.76 | 32.66 | 32.41 | 26.27 | 7.90 | | After exposure, % | 0.81 | 32.27 | 34.26 | 25.05 | 7.61 | | The remaining isotope, % | < 30.9 | < 28.5 | < 30.5 | < 27.5 | < 27.8 | ^{*}In **Pd** σ for impurity elements in 15 dimensions varies from (0.01 to 1-3) %. Table 2 Reducing the content of *Fe* isotopes in *Ni* after processing in hydrogen plasma | Fe in Ni | 54 | 56 | 57 | | |--------------------------|------------------|------------------|-----------------|--| | Before exposure, % | 6.55 ± 0.02 | 91.22 ± 0.10 | 2.23 ± 0.01 | | | After exposure, % | 18.85 ± 0.10 | 79.56 ± 0.26 | 1.59 ± 0.02 | | | The remaining isotope, % | 37.6 | 11.4 | 9.3 | | | Zn in Ni | 64 | 66 | 67 | 68 | 70 | |-----------------------|-----------------|------------------|-----------------|------------------|-----------------| | Before exposure, % | 46.9 ± 0.02 | 28.36 ± 0.02 | 4.34 ± 0.01 | 19.62 ± 0.02 | 0.71 ± 0.00 | | After exposure, % | 98.7 ± 0.33 | 0.32 ± 0.01 | 0.13 ± 0.01 | 0.80 ± 0.03 | 0.01 ± 0.00 | | The remaining isot.,% | 5.5 | 0.03 | 0.08 | 0.1 | 0.07 | The processes of decay of impurities and other transformations (transmutations) in the nonequlibrium plasma of the glow discharge are considered from the point of view of nuclear-chemical reactions. [1] Savvatimova I.B., Poteshin S.S., Kargin N.N., Sysoev A.A., Ryndya S.M., Timashev S.F. ICP MS in the analysis of the phenomenon of low-energy nuclear reactions initiated in metals under the conditions of a glow discharge ", Modern means of plasma diagnostics and their use. The theses of the reports of the 12th conference, Moscow, NRNU MEPHI, Dec. 16-18, 2020, p. 133-136.